This project is currently on hold due to personal circumstances.
Development is expected to resume after December 6, 2025.
Join Us
Scan the QR code to connect to IJAI.
| Directory | Purpose | Notes |
|---|---|---|
App/ |
Main Electron application — UI, launch, and packaging. | Build/dev scripts: npm run build, npm run dev. |
IJAI-configs/ |
Assistant and model configuration files (profiles, launch parameters). | Keep example configs under examples/. |
dataset/ |
Datasets for LLM training/fine-tuning, corpora for STT, collections for TTS. | Specify format and license next to each dataset. |
models/ |
Bundled models and installers (GGUF, ONNX, etc.). | Add a README inside each model folder with download instructions. |
plugins/ |
Plugin system: OpenAPI integrations, extensions, and sample plugins. | Examples live in plugins/examples/. |
share/lexicons/ |
Lexicon resources: dictionaries, transcription tables, localization files. | Version lexicons and cite the source. |
| Path | Description |
|---|---|
| App/src/assets/icons/IJAI-logo.png | Application logo |
| App/src/assets/icons/.gitkeep | # gonna be released |
| App/src/components/ChartCard.js | Chart visualization component |
| App/src/components/DataTable.js | Tabular data component |
| App/src/components/Header.js | Application header |
| App/src/components/Sidebar.js | Sidebar navigation |
| App/src/styles/dashboard.css | Dashboard styling |
| App/src/styles/material.css | Material Design overrides |
| App/index.html | Main HTML entry point |
| App/renderer.js | Electron renderer process |
| App/main.js | Electron main process |
| App/preload.js | Secure preload bridge |
| App/README.md | Documentation for app module |
| App/electron-builder.yml | Build configuration (electron-builder) |
| App/forge.config.js | Forge build configuration |
| App/package.json | NPM dependencies and scripts |
| IJAI-configs/assistant.conf.yaml | Assistant runtime configuration |
| IJAI-configs/models.conf.json | Model registry definitions |
| IJAI-configs/policies.yaml | Policy rules |
| dataset/llm/set1/doc.md | LLM training notes |
| dataset/llm/set2/.gitkeep | # gonna be released |
| dataset/llm/set8/doc.md | Supplemental dataset |
| dataset/llm/articles_names.txt | Corpus index of articles |
| dataset/llm/doc.md | General dataset description |
| dataset/stt/book1.txt | STT training text |
| dataset/tts/voice1_set/.gitkeep | # gonna be released |
| dataset/tts/voice2_set/.gitkeep | # gonna be released |
| dataset/tts/book1.txt | TTS training corpus |
| dataset/important.jl | Julia dataset file |
| dataset/magnificent.asm | Assembly dataset (experimental) |
| dataset/examples/Текстовый документ.txt | # gonna be released |
| dataset/files/info/Текстовый документ.txt | Metadata resources |
| models/codellm/README.md | Model documentation |
| models/codellm/codellama.py | Python integration |
| models/codellm/installer.sh | Installer script |
| models/ollama-deepseekr1:8b/README.md | Model documentation |
| models/ollama-deepseekr1:8b/deepseekr1.py | Python integration |
| models/ollama-deepseekr1:8b/installer.sh | Installer script |
| models/llm/gpt-neo/add_info.md | Additional notes |
| models/llm/gpt-neo/gptneo.py | GPT-Neo integration |
| models/llm/gpt-neo/merges.txt, vocab.json | Tokenizer files |
| models/llm/gpt-neo/special_tokens_map.json | Special tokens |
| models/llm/gpt-neo/tokenizer.json, tokenizer_config.json | Tokenizer configs |
| models/llm/gpt2-medium/config.json | Model configuration |
| models/llm/gpt2-medium/gpt2m.py | GPT-2 medium integration |
| models/llm/gpt2-medium/tokinizer.json | Tokenizer config (naming typo) |
| models/ollama-llama3/DISCLAIMER.md | Usage disclaimer |
| models/ollama-llama3/installer.sh | Installer script |
| models/ollama-llama3/llm3.py | Integration script |
| models/phi3mini/README.md | Model documentation |
| models/phi3mini/added_tokens.json | Model tokenizer additions |
| models/phi3mini/config.json | Model configuration |
| models/phi3mini/configuration_phi3.py | Model configuration script |
| models/phi3mini/generation_config.json | Generation parameters |
| models/phi3mini/model.safetensors | Model weights |
| models/phi3mini/modeling_phi3.py | Model architecture |
| models/phi3mini/script.py | Helper scripts |
| models/phi3mini/special_tokens_map.json | Special tokens map |
| models/phi3mini/tokenizer.json, tokenizer.model, tokenizer_config.json | Tokenizer files |
| models/stt/Coqui/init.py | Python package initialization |
| models/stt/Coqui/coqui_stt.py | STT integration script |
| models/stt/Silero/README.md | Model documentation |
| models/stt/Silero/init.py | Python package initialization |
| models/stt/Silero/silero_stt.py | STT integration script |
| models/stt/whisper-small/config.json, preprocessor_config.json, tokenizer.json | Whisper model configs |
| models/stt/whisper-small/whisper-small.py | Whisper integration script |
| models/tts/tts-small/Текстовый документ.txt | # gonna be released |
| models/vocoder/Текстовый документ.txt | # gonna be released |
| plugins/weather/manifest.json | Plugin manifest |
| plugins/weather/openapi.yaml | OpenAPI schema |
| share/lexicons/Текстовый документ.txt | # gonna be released |
| .gitignore | Git ignore rules |
| COMMERCIAL-LICENSE.md | Commercial license terms |
| CONTRIBUTORS.md | Contributor acknowledgments |
| LICENSE | Open source license |
| README.md | Main documentation |
| Model | Params | GPU (RTX 2080s) | CPU (i7-10700) |
|---|---|---|---|
| Phi-3 Mini | 3.8B | ~45 tok/s | ~6 tok/s |
| LLaMA 3 | 8B | ~22 tok/s | ~3 tok/s |
| DeepSeek R1 | 7B | ~25 tok/s | ~3.5 tok/s |
| CodeLLaMA | 7B | ~24 tok/s | ~3.2 tok/s |
| GPT-Neo | 2.7B | ~40 tok/s | ~5.5 tok/s |
| GPT-2 XL | 1.5B | ~60 tok/s | ~8 tok/s |
| Falcon-7B | 7B | ~26 tok/s | ~3.5 tok/s |
| Mistral-7B | 7B | ~28 tok/s | ~3.7 tok/s |
| Yi-6B | 6B | ~30 tok/s | ~4 tok/s |
| OPT-6.7B | 6.7B | ~23 tok/s | ~3 tok/s |
| StableLM-7B | 7B | ~22 tok/s | ~3 tok/s |
| Model / Folder | CPU | RAM | GPU | Notes |
|---|---|---|---|---|
| codellm | 4+ cores | 16 GB+ | Optional, recommended for 8B+ models | PyTorch / Ollama compatible |
| codellama | 4+ cores | 16 GB+ | NVIDIA GPU (RTX 2060+) for smooth inference | 8-bit/16-bit quantization recommended |
| ollama-deepseekr1:8b | 4+ cores | 16 GB+ | NVIDIA GPU for fast generation | Pretrained 8B model, uses Ollama runtime |
| llm/Falcon-7B | 4+ cores | 16 GB+ | GPU optional, faster with CUDA | TII Falcon, strong general LLM |
| llm/GPT-NeoX-20B | 8+ cores | 32 GB+ | High-end GPU (24 GB VRAM+) required | Very large model, slow on CPU |
| llm/Gemma | 4+ cores | 12 GB+ | GPU optional | Compact Google LLM |
| llm/LLaMA-2 | 4+ cores | 16 GB+ | GPU recommended | Meta LLaMA 2 family |
| llm/MPT | 4+ cores | 16 GB+ | GPU optional | MosaicML transformer family |
| llm/Mistral-7B | 4+ cores | 16 GB+ | GPU recommended | Highly efficient dense model |
| llm/OPT | 4+ cores | 16 GB+ | GPU optional | Meta OPT series |
| llm/Qwen-1.5 | 4+ cores | 16 GB+ | GPU optional | Multilingual Alibaba model |
| llm/StableLM | 4+ cores | 12 GB+ | GPU optional | StabilityAI open family |
| llm/Yi-1.5-6B | 4+ cores | 16 GB+ | GPU recommended | Bilingual efficiency |
| llm/gpt-j-6b | 4+ cores | 16 GB+ | GPU optional | EleutherAI GPT-J classic |
| llm/gpt-neo | 4+ cores | 12 GB+ | GPU optional | EleutherAI GPT-Neo |
| llm/gpt2-medium | 4+ cores | 8 GB+ | GPU optional | Classic GPT-2 medium |
| ollama-llama3/phi3mini | 4+ cores | 12 GB+ | GPU recommended | Small LLaMA3 variant |
| Model / Folder | CPU | RAM | GPU | Audio Requirements |
|---|---|---|---|---|
| stt/Coqui | 4+ cores | 8 GB+ | NVIDIA CUDA GPU recommended | WAV, 16 kHz, mono |
| stt/DeepSpeech | 4+ cores | 8 GB+ | Optional | WAV, 16 kHz, mono |
| stt/Faster-Whisper | 4+ cores | 8 GB+ | GPU recommended | WAV/OGG, 16 kHz |
| stt/Nemo ASR | 4+ cores | 8 GB+ | GPU strongly advised | WAV, 16 kHz |
| stt/Silero | 4+ cores | 8 GB+ | Optional | WAV, 16 kHz, mono |
| stt/Vosk | 4+ cores | 4 GB+ | Optional | WAV, 16 kHz, mono |
| stt/whisper-small | 4+ cores | 8 GB+ | GPU recommended | WAV/OGG, 16 kHz preferred |
| Model / Folder | CPU | RAM | GPU | Notes |
|---|---|---|---|---|
| tts/Parler-TTS | 4+ cores | 8 GB+ | GPU strongly recommended | HuggingFace Parler, realistic voices |
| tts/tts-small | 4+ cores | 8 GB+ | Optional, recommended for faster synthesis | Lightweight TTS |
| vocoder | 4+ cores | 8 GB+ | GPU recommended | Converts spectrograms to waveform |
Models included:
- LLM:
llm/gpt2-medium - STT:
stt/Silero - TTS:
tts/tts-small - Vocoder:
vocoder
Requirements:
| Resource | Recommended |
|---|---|
| CPU | 4 cores modern x86_64 |
| RAM | 8 GB |
| GPU (optional) | NVIDIA CUDA GPU (RTX 2060) for faster STT/TTS inference |
| Storage | ~1 GB for all models |
| Audio format | WAV, 16-bit PCM, mono, 16 kHz |
Models included:
- LLM:
codellm,codellama,ollama-deepseekr1:8b,llm/Falcon-7B,llm/GPT-NeoX-20B,llm/Gemma,llm/LLaMA-2,llm/MPT,llm/Mistral-7B,llm/OPT,llm/Qwen-1.5,llm/StableLM,llm/Yi-1.5-6B,llm/gpt-j-6b,llm/gpt-neo,llm/gpt2-medium,ollama-llama3/phi3mini - STT:
stt/Coqui,stt/DeepSpeech,stt/Faster-Whisper,stt/Nemo ASR,stt/Silero,stt/Vosk,stt/whisper-small - TTS:
tts/Parler-TTS,tts/tts-small - Vocoder:
vocoder
Requirements:
| Resource | Recommended |
|---|---|
| CPU | 8+ cores modern x86_64 |
| RAM | 16 GB+ (32 GB recommended for multiple LLMs) |
| GPU | NVIDIA CUDA GPU (RTX 3060+ recommended) for smooth inference across LLM, STT, and TTS |
| Storage | 20+ GB depending on models downloaded |
| Audio format | WAV/OGG, 16-bit PCM, mono, 16 kHz |
Models included:
- LLM:
llm/gpt2-medium - STT:
stt/Silero - TTS:
tts/tts-small - Vocoder:
vocoder
Requirements:
| Resource | Recommended |
|---|---|
| CPU | 4 cores modern x86_64 |
| RAM | 8 GB |
| GPU (optional) | NVIDIA CUDA GPU (e.g., RTX 2060) for faster STT/TTS inference |
| Storage | ~1 GB for all models |
| Audio format | WAV, 16-bit PCM, mono, 16 kHz |
Minimal set runs on CPU, but GPU improves transcription and TTS speed. Suitable for lightweight testing and small projects.
Models included:
- LLM:
codellm,codellama,ollama-deepseekr1:8b,llm/gpt-neo,llm/gpt2-medium,ollama-llama3/phi3mini - STT:
stt/Coqui,stt/Silero,stt/whisper-small - TTS:
tts/tts-small - Vocoder:
vocoder
Requirements:
| Resource | Recommended |
|---|---|
| CPU | 8+ cores modern x86_64 |
| RAM | 16 GB+ (32 GB recommended for multiple LLMs) |
| GPU | NVIDIA CUDA GPU (RTX 3060+ recommended) for smooth inference across LLM, STT, and TTS |
| Storage | 10+ GB depending on models downloaded |
| Audio format | WAV/OGG, 16-bit PCM, mono, 16 kHz |
Full set allows full functionality: large LLMs, multiple STT engines, and high-quality TTS. GPU is strongly recommended for smooth experience.
flowchart TB
%% === SYSTEM CHECK ===
SYS[System Profiler: CPU GPU RAM]
%% === OPTIMIZATION PIPELINE ===
OPT[Auto Configurator: Quantization + Model Selection]
BENCH[Benchmark Runner: Tokens per sec]
DEPLOY[Runtime Deployment: Optimized Models]
%% === RAW MODELS ===
subgraph RAW [Raw Models]
M1[CodeLLM or CodeLLaMA]
M2[DeepSeek R1]
M3[GPT-Neo and GPT-2]
M4[LLaMA-3]
M5[Phi-3 Mini]
M6[Whisper Small STT]
M7[TTS Small]
M8[Vocoder]
end
%% === DATASETS ===
subgraph DATA [Datasets]
D1[LLM corpora]
D2[STT transcripts]
D3[TTS voices]
end
%% === CONFIGS ===
subgraph CFG [Configuration Layer]
C1[assistant.conf.yaml]
C2[models.conf.json]
C3[policies.yaml]
end
%% === RUNTIME SERVICES ===
subgraph RUNTIME [Runtime Services]
MON[Monitoring and Logging]
SEC[Policy Engine]
API[Runtime API]
end
%% === UI & PLUGINS ===
subgraph UI [User Interface]
U1[Electron Desktop UI]
P1[Plugins: Weather etc]
end
%% === FLOWS ===
SYS --> OPT --> BENCH --> DEPLOY
%% DATA → RAW MODELS
D1 --> M1
D1 --> M2
D1 --> M3
D1 --> M4
D1 --> M5
D2 --> M6
D3 --> M7 --> M8
%% RAW MODELS → OPTIMIZER
M1 --> OPT
M2 --> OPT
M3 --> OPT
M4 --> OPT
M5 --> OPT
M6 --> OPT
M7 --> OPT
M8 --> OPT
%% OPTIMIZED DEPLOY → RUNTIME SERVICES
DEPLOY --> API
DEPLOY --> MON
DEPLOY --> SEC
%% CONFIGS
C1 --> API
C2 --> API
C3 --> SEC
%% UI LAYER
U1 --> API
U1 --> MON
U1 --> SEC
U1 --> P1
P1 --> API
- assistant.conf.yaml – Core assistant runtime configuration.
- models.conf.json – Central model registry.
- policies.yaml – Execution and safety policies.
Supported families include:
- CodeLLM – Code generation.
- DeepSeek R1 – Reasoning model.
- GPT-Neo & GPT-2 – General language models.
- LLaMA-3 – Open-source LLM.
- Phi-3 Mini – Lightweight transformer model.
- Whisper Small – Speech recognition.
- TTS Small + Vocoder – Speech synthesis.
Each model folder provides:
- Installer (
installer.sh) - Python integration (
*.py) - Tokenizer/configuration files
- Model weights (
.safetensors)
- LLM corpora – Markdown/text resources.
- STT corpora – Speech recognition text files.
- TTS corpora – Voice datasets, transcripts.
- Experimental – Julia (
.jl) and Assembly (.asm) files.
-
Weather plugin as reference implementation.
manifest.json– Plugin declaration.openapi.yaml– API specification.
# Clone repository
git clone https://github.com/your-org/IJAI.git
cd IJAI
# Install frontend dependencies
cd App
npm install
# Run in development
npm start
# Build production desktop app
npm run buildModel installation is handled by individual installer.sh scripts inside each model folder.
- Start the Electron application.
- Configure assistant and models via
IJAI-configs/. - Place datasets in
dataset/. - Install and load required models from
models/. - Extend functionality with
plugins/.
- Follow established coding standards.
- Submit pull requests for review.
- See
CONTRIBUTORS.mdfor acknowledgments.
- Core Electron ( betta version )
- LLM integration (Phi-3 Mini, GPT-Neo, LLaMA-3, DeepSeek R1)
- STT integration (Whisper Small)
- TTS pipeline (TTS Small + Vocoder)
- Config-driven architecture (assistant, models, policies)
- Plugin framework (OpenAPI-based, example: Weather)
- Model installer scripts (
installer.sh) - Python integration for models (
*.pybindings) - Dataset ingestion (basic text/markdown corpora)
- Tokenizer and config handling (HF-compatible)
- Basic UI components (Sidebar, Header, DataTable, ChartCard)
- Build system (Forge + electron-builder)
- Model fine-tuning workflow (UI + CLI prototype)
- Interactive prompt playground for LLMs
- Voice cloning demo for TTS
- Speech-to-speech pipeline (STT → LLM → TTS)
- Minimal plugin marketplace (manual install)
- Auto config saver on your flash drive
- GPU acceleration benchmarks (CUDA / ROCm)
- Model caching & optimized loading (disk + RAM)
- Dataset versioning & tagging
- CLI tool (
ijai-cli) for headless workflows - Enhanced error logging & monitoring dashboard
- Extended plugin APIs (beyond Weather)
- Cloud sync & model sharing
- Advanced policy engine (safety, filtering, sandboxing)
- Fine-tuning UI (drag-and-drop datasets)
- Multi-language UI (EN, RU, etc.)
- Integration with external APIs (translation, search, etc.)
- Plugin marketplace (in-app browsing & install)
- Mobile companion app (view results, run lightweight tasks)
- Open Source License:
AGPLv3.0 - Commercial License:
COMMERCIAL-LICENSE.md
All models, datasets, and configurations provided in this repository are released strictly for research and educational purposes.
By using this project, you agree to follow these rules:
-
❌ No malicious usage — It is strictly forbidden to use IJAI or any of its models for harmful purposes, including but not limited to:
- spreading disinformation,
- generating hateful or violent content,
- surveillance or harassment,
- assisting in illegal activities.
-
❌ No malicious fine-tuning — Fine-tuning IJAI models on datasets intended for harmful, discriminatory, or illegal applications is prohibited.
-
✅ Allowed usage — You may use, extend, and fine-tune the models for positive, ethical, and constructive purposes such as:
- research,
- accessibility,
- education,
- productivity,
- creativity.
Important: Any violation of these policies voids your right to use or redistribute this project under its license.
We trust the open-source community to act responsibly and improve IJAI in ways that benefit everyone.
You can support me via crypto, Steam trade or Click. Any help is appreciated!
| Currency | Network | Address |
|---|---|---|
| USDT | TRC20 | TPutzJ12Bs4jAPLT9rkQhvg6PdwHhQfJVB |
You can send via Click using the app:
Thank you for your support. It helps me keep working on projects.
Prebuilt model weights and installers are available via the official distribution channel: Telegram.
The project is currently in the development stage, with core functionalities being implemented and tested.
Additional features, optimizations, and refinements are planned for subsequent development phases.



