Skip to content
/ IJAI Public

IJAI is a modular AI assistant that supports text and voice interactions using LLM, STT, and TTS models. It features a customizable GUI, plugin system, and manages its own project files and assets safely within user permissions. The project structure organizes models, configs, scripts, and tests for easy development and expansion.

License

Notifications You must be signed in to change notification settings

IbrokhimN/IJAI

IJAI Platform

Build License Platform Models Telegram
Last commit Stars Forks

This project is currently on hold due to personal circumstances.
Development is expected to resume after December 6, 2025.

( Work in progress )

IJAI is a modular AI platform that integrates Large Language Models (LLM), Speech-to-Text (STT), and Text-to-Speech (TTS) with a cross-platform Electron + React desktop application. It provides a unified environment for model management, dataset handling, configuration control, and plugin-based extensions.


Features

  • Cross-platform desktop application (Electron).
  • Integrated LLM, STT, and TTS pipelines.
  • Config-driven architecture for models and assistant policies.
  • Support for custom datasets and corpora.
  • Extensible plugin system (OpenAPI-based).
  • Prebuilt model installers and Python integration scripts.
IJAI Logo

Join Us

Scan the QR code to connect to IJAI.

QR Код

Repository Structure

Directory Purpose Notes
App/ Main Electron application — UI, launch, and packaging. Build/dev scripts: npm run build, npm run dev.
IJAI-configs/ Assistant and model configuration files (profiles, launch parameters). Keep example configs under examples/.
dataset/ Datasets for LLM training/fine-tuning, corpora for STT, collections for TTS. Specify format and license next to each dataset.
models/ Bundled models and installers (GGUF, ONNX, etc.). Add a README inside each model folder with download instructions.
plugins/ Plugin system: OpenAPI integrations, extensions, and sample plugins. Examples live in plugins/examples/.
share/lexicons/ Lexicon resources: dictionaries, transcription tables, localization files. Version lexicons and cite the source.

File Overview

Path Description
App/src/assets/icons/IJAI-logo.png Application logo
App/src/assets/icons/.gitkeep # gonna be released
App/src/components/ChartCard.js Chart visualization component
App/src/components/DataTable.js Tabular data component
App/src/components/Header.js Application header
App/src/components/Sidebar.js Sidebar navigation
App/src/styles/dashboard.css Dashboard styling
App/src/styles/material.css Material Design overrides
App/index.html Main HTML entry point
App/renderer.js Electron renderer process
App/main.js Electron main process
App/preload.js Secure preload bridge
App/README.md Documentation for app module
App/electron-builder.yml Build configuration (electron-builder)
App/forge.config.js Forge build configuration
App/package.json NPM dependencies and scripts
IJAI-configs/assistant.conf.yaml Assistant runtime configuration
IJAI-configs/models.conf.json Model registry definitions
IJAI-configs/policies.yaml Policy rules
dataset/llm/set1/doc.md LLM training notes
dataset/llm/set2/.gitkeep # gonna be released
dataset/llm/set8/doc.md Supplemental dataset
dataset/llm/articles_names.txt Corpus index of articles
dataset/llm/doc.md General dataset description
dataset/stt/book1.txt STT training text
dataset/tts/voice1_set/.gitkeep # gonna be released
dataset/tts/voice2_set/.gitkeep # gonna be released
dataset/tts/book1.txt TTS training corpus
dataset/important.jl Julia dataset file
dataset/magnificent.asm Assembly dataset (experimental)
dataset/examples/Текстовый документ.txt # gonna be released
dataset/files/info/Текстовый документ.txt Metadata resources
models/codellm/README.md Model documentation
models/codellm/codellama.py Python integration
models/codellm/installer.sh Installer script
models/ollama-deepseekr1:8b/README.md Model documentation
models/ollama-deepseekr1:8b/deepseekr1.py Python integration
models/ollama-deepseekr1:8b/installer.sh Installer script
models/llm/gpt-neo/add_info.md Additional notes
models/llm/gpt-neo/gptneo.py GPT-Neo integration
models/llm/gpt-neo/merges.txt, vocab.json Tokenizer files
models/llm/gpt-neo/special_tokens_map.json Special tokens
models/llm/gpt-neo/tokenizer.json, tokenizer_config.json Tokenizer configs
models/llm/gpt2-medium/config.json Model configuration
models/llm/gpt2-medium/gpt2m.py GPT-2 medium integration
models/llm/gpt2-medium/tokinizer.json Tokenizer config (naming typo)
models/ollama-llama3/DISCLAIMER.md Usage disclaimer
models/ollama-llama3/installer.sh Installer script
models/ollama-llama3/llm3.py Integration script
models/phi3mini/README.md Model documentation
models/phi3mini/added_tokens.json Model tokenizer additions
models/phi3mini/config.json Model configuration
models/phi3mini/configuration_phi3.py Model configuration script
models/phi3mini/generation_config.json Generation parameters
models/phi3mini/model.safetensors Model weights
models/phi3mini/modeling_phi3.py Model architecture
models/phi3mini/script.py Helper scripts
models/phi3mini/special_tokens_map.json Special tokens map
models/phi3mini/tokenizer.json, tokenizer.model, tokenizer_config.json Tokenizer files
models/stt/Coqui/init.py Python package initialization
models/stt/Coqui/coqui_stt.py STT integration script
models/stt/Silero/README.md Model documentation
models/stt/Silero/init.py Python package initialization
models/stt/Silero/silero_stt.py STT integration script
models/stt/whisper-small/config.json, preprocessor_config.json, tokenizer.json Whisper model configs
models/stt/whisper-small/whisper-small.py Whisper integration script
models/tts/tts-small/Текстовый документ.txt # gonna be released
models/vocoder/Текстовый документ.txt # gonna be released
plugins/weather/manifest.json Plugin manifest
plugins/weather/openapi.yaml OpenAPI schema
share/lexicons/Текстовый документ.txt # gonna be released
.gitignore Git ignore rules
COMMERCIAL-LICENSE.md Commercial license terms
CONTRIBUTORS.md Contributor acknowledgments
LICENSE Open source license
README.md Main documentation

Benchmarks (LLM Inference Speed)

Model Params GPU (RTX 2080s) CPU (i7-10700)
Phi-3 Mini 3.8B ~45 tok/s ~6 tok/s
LLaMA 3 8B ~22 tok/s ~3 tok/s
DeepSeek R1 7B ~25 tok/s ~3.5 tok/s
CodeLLaMA 7B ~24 tok/s ~3.2 tok/s
GPT-Neo 2.7B ~40 tok/s ~5.5 tok/s
GPT-2 XL 1.5B ~60 tok/s ~8 tok/s
Falcon-7B 7B ~26 tok/s ~3.5 tok/s
Mistral-7B 7B ~28 tok/s ~3.7 tok/s
Yi-6B 6B ~30 tok/s ~4 tok/s
OPT-6.7B 6.7B ~23 tok/s ~3 tok/s
StableLM-7B 7B ~22 tok/s ~3 tok/s

System Requirements

Large Language Models (LLM)

Model / Folder CPU RAM GPU Notes
codellm 4+ cores 16 GB+ Optional, recommended for 8B+ models PyTorch / Ollama compatible
codellama 4+ cores 16 GB+ NVIDIA GPU (RTX 2060+) for smooth inference 8-bit/16-bit quantization recommended
ollama-deepseekr1:8b 4+ cores 16 GB+ NVIDIA GPU for fast generation Pretrained 8B model, uses Ollama runtime
llm/Falcon-7B 4+ cores 16 GB+ GPU optional, faster with CUDA TII Falcon, strong general LLM
llm/GPT-NeoX-20B 8+ cores 32 GB+ High-end GPU (24 GB VRAM+) required Very large model, slow on CPU
llm/Gemma 4+ cores 12 GB+ GPU optional Compact Google LLM
llm/LLaMA-2 4+ cores 16 GB+ GPU recommended Meta LLaMA 2 family
llm/MPT 4+ cores 16 GB+ GPU optional MosaicML transformer family
llm/Mistral-7B 4+ cores 16 GB+ GPU recommended Highly efficient dense model
llm/OPT 4+ cores 16 GB+ GPU optional Meta OPT series
llm/Qwen-1.5 4+ cores 16 GB+ GPU optional Multilingual Alibaba model
llm/StableLM 4+ cores 12 GB+ GPU optional StabilityAI open family
llm/Yi-1.5-6B 4+ cores 16 GB+ GPU recommended Bilingual efficiency
llm/gpt-j-6b 4+ cores 16 GB+ GPU optional EleutherAI GPT-J classic
llm/gpt-neo 4+ cores 12 GB+ GPU optional EleutherAI GPT-Neo
llm/gpt2-medium 4+ cores 8 GB+ GPU optional Classic GPT-2 medium
ollama-llama3/phi3mini 4+ cores 12 GB+ GPU recommended Small LLaMA3 variant

Speech-to-Text (STT)

Model / Folder CPU RAM GPU Audio Requirements
stt/Coqui 4+ cores 8 GB+ NVIDIA CUDA GPU recommended WAV, 16 kHz, mono
stt/DeepSpeech 4+ cores 8 GB+ Optional WAV, 16 kHz, mono
stt/Faster-Whisper 4+ cores 8 GB+ GPU recommended WAV/OGG, 16 kHz
stt/Nemo ASR 4+ cores 8 GB+ GPU strongly advised WAV, 16 kHz
stt/Silero 4+ cores 8 GB+ Optional WAV, 16 kHz, mono
stt/Vosk 4+ cores 4 GB+ Optional WAV, 16 kHz, mono
stt/whisper-small 4+ cores 8 GB+ GPU recommended WAV/OGG, 16 kHz preferred

Text-to-Speech (TTS)

Model / Folder CPU RAM GPU Notes
tts/Parler-TTS 4+ cores 8 GB+ GPU strongly recommended HuggingFace Parler, realistic voices
tts/tts-small 4+ cores 8 GB+ Optional, recommended for faster synthesis Lightweight TTS
vocoder 4+ cores 8 GB+ GPU recommended Converts spectrograms to waveform

Minimal Set

Models included:

  • LLM: llm/gpt2-medium
  • STT: stt/Silero
  • TTS: tts/tts-small
  • Vocoder: vocoder

Requirements:

Resource Recommended
CPU 4 cores modern x86_64
RAM 8 GB
GPU (optional) NVIDIA CUDA GPU (RTX 2060) for faster STT/TTS inference
Storage ~1 GB for all models
Audio format WAV, 16-bit PCM, mono, 16 kHz

Full Set

Models included:

  • LLM: codellm, codellama, ollama-deepseekr1:8b, llm/Falcon-7B, llm/GPT-NeoX-20B, llm/Gemma, llm/LLaMA-2, llm/MPT, llm/Mistral-7B, llm/OPT, llm/Qwen-1.5, llm/StableLM, llm/Yi-1.5-6B, llm/gpt-j-6b, llm/gpt-neo, llm/gpt2-medium, ollama-llama3/phi3mini
  • STT: stt/Coqui, stt/DeepSpeech, stt/Faster-Whisper, stt/Nemo ASR, stt/Silero, stt/Vosk, stt/whisper-small
  • TTS: tts/Parler-TTS, tts/tts-small
  • Vocoder: vocoder

Requirements:

Resource Recommended
CPU 8+ cores modern x86_64
RAM 16 GB+ (32 GB recommended for multiple LLMs)
GPU NVIDIA CUDA GPU (RTX 3060+ recommended) for smooth inference across LLM, STT, and TTS
Storage 20+ GB depending on models downloaded
Audio format WAV/OGG, 16-bit PCM, mono, 16 kHz

Minimal Set

Models included:

  • LLM: llm/gpt2-medium
  • STT: stt/Silero
  • TTS: tts/tts-small
  • Vocoder: vocoder

Requirements:

Resource Recommended
CPU 4 cores modern x86_64
RAM 8 GB
GPU (optional) NVIDIA CUDA GPU (e.g., RTX 2060) for faster STT/TTS inference
Storage ~1 GB for all models
Audio format WAV, 16-bit PCM, mono, 16 kHz

Minimal set runs on CPU, but GPU improves transcription and TTS speed. Suitable for lightweight testing and small projects.


Full Set

Models included:

  • LLM: codellm, codellama, ollama-deepseekr1:8b, llm/gpt-neo, llm/gpt2-medium, ollama-llama3/phi3mini
  • STT: stt/Coqui, stt/Silero, stt/whisper-small
  • TTS: tts/tts-small
  • Vocoder: vocoder

Requirements:

Resource Recommended
CPU 8+ cores modern x86_64
RAM 16 GB+ (32 GB recommended for multiple LLMs)
GPU NVIDIA CUDA GPU (RTX 3060+ recommended) for smooth inference across LLM, STT, and TTS
Storage 10+ GB depending on models downloaded
Audio format WAV/OGG, 16-bit PCM, mono, 16 kHz

Full set allows full functionality: large LLMs, multiple STT engines, and high-quality TTS. GPU is strongly recommended for smooth experience.

System Architecture

flowchart TB
    %% === SYSTEM CHECK ===
    SYS[System Profiler: CPU GPU RAM]

    %% === OPTIMIZATION PIPELINE ===
    OPT[Auto Configurator: Quantization + Model Selection]
    BENCH[Benchmark Runner: Tokens per sec]
    DEPLOY[Runtime Deployment: Optimized Models]

    %% === RAW MODELS ===
    subgraph RAW [Raw Models]
        M1[CodeLLM or CodeLLaMA]
        M2[DeepSeek R1]
        M3[GPT-Neo and GPT-2]
        M4[LLaMA-3]
        M5[Phi-3 Mini]
        M6[Whisper Small STT]
        M7[TTS Small]
        M8[Vocoder]
    end

    %% === DATASETS ===
    subgraph DATA [Datasets]
        D1[LLM corpora]
        D2[STT transcripts]
        D3[TTS voices]
    end

    %% === CONFIGS ===
    subgraph CFG [Configuration Layer]
        C1[assistant.conf.yaml]
        C2[models.conf.json]
        C3[policies.yaml]
    end

    %% === RUNTIME SERVICES ===
    subgraph RUNTIME [Runtime Services]
        MON[Monitoring and Logging]
        SEC[Policy Engine]
        API[Runtime API]
    end

    %% === UI & PLUGINS ===
    subgraph UI [User Interface]
        U1[Electron Desktop UI]
        P1[Plugins: Weather etc]
    end

    %% === FLOWS ===
    SYS --> OPT --> BENCH --> DEPLOY

    %% DATA → RAW MODELS
    D1 --> M1
    D1 --> M2
    D1 --> M3
    D1 --> M4
    D1 --> M5
    D2 --> M6
    D3 --> M7 --> M8

    %% RAW MODELS → OPTIMIZER
    M1 --> OPT
    M2 --> OPT
    M3 --> OPT
    M4 --> OPT
    M5 --> OPT
    M6 --> OPT
    M7 --> OPT
    M8 --> OPT

    %% OPTIMIZED DEPLOY → RUNTIME SERVICES
    DEPLOY --> API
    DEPLOY --> MON
    DEPLOY --> SEC

    %% CONFIGS
    C1 --> API
    C2 --> API
    C3 --> SEC

    %% UI LAYER
    U1 --> API
    U1 --> MON
    U1 --> SEC
    U1 --> P1
    P1 --> API

Loading

Configuration

  • assistant.conf.yaml – Core assistant runtime configuration.
  • models.conf.json – Central model registry.
  • policies.yaml – Execution and safety policies.

Models

Supported families include:

  • CodeLLM – Code generation.
  • DeepSeek R1 – Reasoning model.
  • GPT-Neo & GPT-2 – General language models.
  • LLaMA-3 – Open-source LLM.
  • Phi-3 Mini – Lightweight transformer model.
  • Whisper Small – Speech recognition.
  • TTS Small + Vocoder – Speech synthesis.

Each model folder provides:

  • Installer (installer.sh)
  • Python integration (*.py)
  • Tokenizer/configuration files
  • Model weights (.safetensors)

Datasets

  • LLM corpora – Markdown/text resources.
  • STT corpora – Speech recognition text files.
  • TTS corpora – Voice datasets, transcripts.
  • Experimental – Julia (.jl) and Assembly (.asm) files.

Plugins

  • Weather plugin as reference implementation.

    • manifest.json – Plugin declaration.
    • openapi.yaml – API specification.

Installation

# Clone repository
git clone https://github.com/your-org/IJAI.git
cd IJAI

# Install frontend dependencies
cd App
npm install

# Run in development
npm start

# Build production desktop app
npm run build

Model installation is handled by individual installer.sh scripts inside each model folder.


CLI - version

IJAI CLI

AI usage file

Usage

  1. Start the Electron application.
  2. Configure assistant and models via IJAI-configs/.
  3. Place datasets in dataset/.
  4. Install and load required models from models/.
  5. Extend functionality with plugins/.

Contributing

  • Follow established coding standards.
  • Submit pull requests for review.
  • See CONTRIBUTORS.md for acknowledgments.

Project Stats

Star History

Star History Chart

Contributors

Contributors

Roadmap

✅ Completed (Ready for Release)

  • Core Electron ( betta version )
  • LLM integration (Phi-3 Mini, GPT-Neo, LLaMA-3, DeepSeek R1)
  • STT integration (Whisper Small)
  • TTS pipeline (TTS Small + Vocoder)
  • Config-driven architecture (assistant, models, policies)
  • Plugin framework (OpenAPI-based, example: Weather)
  • Model installer scripts (installer.sh)
  • Python integration for models (*.py bindings)
  • Dataset ingestion (basic text/markdown corpora)
  • Tokenizer and config handling (HF-compatible)
  • Basic UI components (Sidebar, Header, DataTable, ChartCard)
  • Build system (Forge + electron-builder)

🧪 Demo / Experimental

  • Model fine-tuning workflow (UI + CLI prototype)
  • Interactive prompt playground for LLMs
  • Voice cloning demo for TTS
  • Speech-to-speech pipeline (STT → LLM → TTS)
  • Minimal plugin marketplace (manual install)

🚧 In Progress

  • Auto config saver on your flash drive
  • GPU acceleration benchmarks (CUDA / ROCm)
  • Model caching & optimized loading (disk + RAM)
  • Dataset versioning & tagging
  • CLI tool (ijai-cli) for headless workflows
  • Enhanced error logging & monitoring dashboard
  • Extended plugin APIs (beyond Weather)

🎯 Planned for Full Release

  • Cloud sync & model sharing
  • Advanced policy engine (safety, filtering, sandboxing)
  • Fine-tuning UI (drag-and-drop datasets)
  • Multi-language UI (EN, RU, etc.)
  • Integration with external APIs (translation, search, etc.)
  • Plugin marketplace (in-app browsing & install)
  • Mobile companion app (view results, run lightweight tasks)

License

  • Open Source License: AGPLv3.0
  • Commercial License: COMMERCIAL-LICENSE.md

Usage Policy

All models, datasets, and configurations provided in this repository are released strictly for research and educational purposes.
By using this project, you agree to follow these rules:

  • No malicious usage — It is strictly forbidden to use IJAI or any of its models for harmful purposes, including but not limited to:

    • spreading disinformation,
    • generating hateful or violent content,
    • surveillance or harassment,
    • assisting in illegal activities.
  • No malicious fine-tuning — Fine-tuning IJAI models on datasets intended for harmful, discriminatory, or illegal applications is prohibited.

  • Allowed usage — You may use, extend, and fine-tune the models for positive, ethical, and constructive purposes such as:

    • research,
    • accessibility,
    • education,
    • productivity,
    • creativity.

Important: Any violation of these policies voids your right to use or redistribute this project under its license.
We trust the open-source community to act responsibly and improve IJAI in ways that benefit everyone.

💝 Support the Developer

You can support me via crypto, Steam trade or Click. Any help is appreciated!


💳 Crypto Donations

Currency Network Address
USDT TRC20 TPutzJ12Bs4jAPLT9rkQhvg6PdwHhQfJVB

🎮 Steam Trade

Trade with me on Steam


📲 Click (P2P)

You can send via Click using the app:
Pay via Click


Thank you for your support. It helps me keep working on projects.

Prebuilt model weights and installers are available via the official distribution channel: Telegram.

The project is currently in the development stage, with core functionalities being implemented and tested.
Additional features, optimizations, and refinements are planned for subsequent development phases.

About

IJAI is a modular AI assistant that supports text and voice interactions using LLM, STT, and TTS models. It features a customizable GUI, plugin system, and manages its own project files and assets safely within user permissions. The project structure organizes models, configs, scripts, and tests for easy development and expansion.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •