Skip to content

schizoprada/schematix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

12 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Schematix

PyPI version Python 3.9+ License: MIT Tests

A Python library for declarative data mapping and transformation that emphasizes reusability and composability. Define your target schemas once and bind them to different data sources with intuitive operator overloading.

✨ Key Features

  • 🎯 Reusable Schema Definitions - Define once, use across multiple data sources
  • πŸ”§ Intuitive Operators - >>, |, &, @, + for elegant data transformations
  • πŸ—οΈ Type Agnostic - Works with dicts, dataclasses, Pydantic models, any attributable objects
  • 🧩 Composable Architecture - Mix and match field types and transformations
  • πŸ›‘οΈ Comprehensive Validation - Built-in error handling and validation
  • πŸ“Š Batch Processing - Transform lists of data efficiently
  • 🎨 Clean API - Readable, maintainable transformation code

πŸš€ Quick Start

Installation

pip install schematix

Basic Usage

from schematix import Schema, Field

# Define your target schema
class UserSchema(Schema):
    id = Field(source='user_id', target='id')
    email = Field(source='email_address', target='email', required=True)
    name = Field(source='first_name') + Field(source='last_name')

# Transform data
data = {
    'user_id': 123,
    'email_address': '[email protected]',
    'first_name': 'John',
    'last_name': 'Doe'
}

user = UserSchema().transform(data)
# Result: {'id': 123, 'email': '[email protected]', 'name': 'John Doe'}

🎭 Operator Magic

Schematix provides intuitive operators for common transformation patterns:

Pipeline (>>) - Connect source to target

source_field >> target_field  # Extract from source, assign to target

Fallback (|) - Try alternatives

Field(source='email') | Field(source='contact_email')  # Try email, fallback to contact_email

Combine (&) - Merge multiple fields

user_fields = Field(source='name') & Field(source='email') & Field(source='age')

Nested (@) - Apply to nested data

Field(source='name') @ 'user.profile'  # Extract name from data.user.profile.name

Accumulate (+) - Smart value combination

Field(source='first') + Field(source='last')  # "John" + "Doe" = "John Doe"
Field(source='price') + Field(source='tax')   # 100 + 15 = 115

πŸ—οΈ Advanced Usage

Schema Binding for Multiple Data Sources

class UserSchema(Schema):
    id = Field()
    email = Field(required=True)
    name = Field()

# Bind to different data sources
reddit_users = UserSchema().bind({
    'id': 'user_id',
    'email': 'email_addr',
    'name': ('username', str.title)  # Extract username and titlecase it
})

api_users = UserSchema().bind({
    'id': 'uid',
    'email': 'contact.email',
    'name': lambda data: f"{data['first']} {data['last']}"
})

# Transform from different sources
reddit_user = reddit_users.transform(reddit_data)
api_user = api_users.transform(api_data)

Enhanced Field Types

from schematix import SourceField, TargetField

# SourceField with fallbacks and conditions
email = SourceField(
    source='primary_email',
    fallbacks=['secondary_email', 'contact.email'],
    condition=lambda data: data.get('active', True)
)

# TargetField with formatting and multiple targets
name = TargetField(
    target='display_name',
    formatter=str.title,
    additionaltargets=['full_name', 'user_name']
)

Target Type Conversion

from dataclasses import dataclass

@dataclass
class User:
    id: int
    email: str
    name: str

# Convert directly to dataclass
user_obj = UserSchema().transform(data, typetarget=User)
print(type(user_obj))  # <class '__main__.User'>

Schema Composition

# Merge schemas
BaseUserSchema = Schema.merge(ContactSchema, ProfileSchema)

# Copy with modifications
ExtendedUserSchema = BaseUserSchema.copy(
    created_at=Field(source='registration_date'),
    is_premium=Field(source='account_type', transform=lambda x: x == 'premium')
)

# Create subsets
PublicUserSchema = ExtendedUserSchema.subset('id', 'name', 'email')

πŸ”§ Real-World Examples

API Response Transformation

# GitHub API to internal user format
class GitHubUserSchema(Schema):
    id = Field(source='id')
    username = Field(source='login')
    name = Field(source='name') | Field(source='login')  # Fallback to login
    email = Field(source='email')
    repos = Field(source='public_repos', default=0)
    profile = Field(source='html_url')

github_user = GitHubUserSchema().transform(github_api_response)

Web Scraping Normalization

# Normalize product data from different e-commerce sites
class ProductSchema(Schema):
    name = Field()
    price = Field(transform=lambda x: float(x.replace('$', '')))
    rating = Field(default=0.0)

# Site-specific bindings
amazon_products = ProductSchema().bind({
    'name': 'title',
    'price': 'price.amount',
    'rating': 'averageRating'
})

ebay_products = ProductSchema().bind({
    'name': 'itemTitle',
    'price': 'currentPrice.value',
    'rating': ('feedbackScore', lambda x: x / 100)  # Convert to 0-5 scale
})

ETL Pipeline

# Database to data warehouse transformation
class AnalyticsUserSchema(Schema):
    user_id = Field(source='id', required=True)
    signup_date = Field(source='created_at', transform=parse_date)
    lifetime_value = Field(source='orders', transform=calculate_ltv)
    segment = (
        Field(source='total_spent', transform=lambda x: 'premium' if x > 1000 else 'standard') |
        Field(default='unknown')
    )

# Batch processing
users = AnalyticsUserSchema().transformplural(user_records)

πŸ“Š Error Handling & Validation

# Comprehensive validation
errors = UserSchema().validate(data)
if errors:
    print(f"Validation errors: {errors}")

# Field-level error handling with fallbacks
safe_extraction = (
    Field(source='primary_source', required=True) |
    Field(source='backup_source') |
    Field(default='fallback_value')
)

Decorator Style (Alternative Syntax)

import schematix as sx

# Define fields using decorators
@sx.field
class UserID:
    source = 'user_id'
    required = True

@sx.field.accumulated
class FullName:
    fields = [
        sx.Field(source='first_name'),
        sx.Field(source='last_name')
    ]

# Define schema using decorator
@sx.schema
class UserSchema:
    id = UserID
    email = sx.Field(source='email_address', required=True)
    name = FullName

# Same transformation capability
user = UserSchema().transform(data)

πŸ”„ Transform System

Schematix now includes a powerful transform system for data processing pipelines:

Intuitive Transform Composition

from schematix.transforms import text, numbers, common

# Pipeline composition with >> operator
name_cleaner = text.strip >> text.title >> text.normalizewhitespace

# Fallback logic with | operator
safe_number = numbers.to.int | numbers.constant(0)

# Parallel processing with & operator
multi_format = numbers.format.currency & numbers.format.percent

# Real-world cleaning pipeline
email_processor = common.clean.email >> common.validate.email

Comprehensive Transform Library

  • Text: String manipulation, regex, encoding, formatting (35+ transforms)
  • Numbers: Math operations, formatting, validation (30+ transforms)
  • Dates: Parsing, formatting, timezone handling (40+ transforms)
  • Collections: List/dict operations, filtering, aggregation (25+ transforms)
  • Validation: Format checking, cleaning, requirements (20+ transforms)
  • Common: Pre-built patterns for real-world use cases (25+ transforms)

Advanced Features

# Context-aware transforms
full_name = transforms.multifield(['first_name', 'last_name'],
                                 lambda f, l: f"{f} {l}")

# Conditional transforms
format_price = transforms.conditional(
    lambda x: x > 100,
    numbers.format.currency(),
    numbers.format.commas()
)

# Safe operations with fallbacks
safe_clean = common.clean.safe.email(default="[email protected]")

Transform + Schema Integration

# Use transforms in field definitions
class UserSchema(Schema):
    name = Field(source='full_name', transform=text.strip >> text.title)
    email = Field(source='email_addr', transform=common.clean.email)
    price = Field(source='amount', transform=numbers.to.float >> numbers.format.currency)

# Or use the short aliases
import schematix as sx

class ProductSchema(sx.Schema):
    title = sx.Field(source='name', transform=sx.x.txt.title)
    cost = sx.Field(source='price', transform=sx.x.num.format.currency())

πŸ› οΈ Development Status

Schematix is actively developed and production-ready:

  • βœ… 173 passing tests with comprehensive coverage
  • βœ… Type hints throughout for excellent IDE support
  • βœ… Detailed documentation and examples
  • βœ… Semantic versioning and changelog
  • βœ… MIT License - use freely in commercial projects

🀝 Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

πŸ“„ License

MIT License - see LICENSE for details.

πŸ”— Links

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages