ApiQL is a simple domain language for API consumers to express REST resource filtering criteria in a concise, powerful, URL friendly way.
ApiQL can be installed and updated with pip:
pip install apiql
Api query language provides set of predicates and expressions allowing API providers and consumers to build complex resource queries. While ApiQL syntax is in largely SQL inspired, it is designed to be technology agnostic. ApiQL is translated into abstract criteria tree and can be transformed into backend specific functionality.
ApiQL query is set of basic predicates which may be then composed using conjunctions (and) or disjunctions (or) into expressions.
For example, let's assume we have REST API exposing movie information:
wget -q -O - 'http://awso.me/api/movies'
[{
"title": "Monty Python and the Holy Grail",
"release_year": 1975,
"original_title": "Monty Python and the Holy Grail"
"created_datetime": "2019-05-01T09:17:06.527181+00:00",
"external_id": "762",
"genres": [{"id" : 1, "name": "Comedy"}, {"id" : 2, "name": "Adventure"}, {"id" : 2, "name": "Fantasy"}],
"id": 1,
"plot": "King Arthur, accompanied by his squire, recruits his Knights of the Round Table [...]",
"rating": 6.0,
"source": "tmdb",
"ignored": false
},
...
]In its most basic form, ApiQL query is just single predicate:
wget -q -O - 'http://awso.me/api/movies?filter=title=="Monty Python and the Holy Grail"'
which will filter only "Monty Python and the Holy Grails" resources. (whole ApiQL query is contained within single URL query param; note that ApiQL uses == operator for equality, not =).
Note: ApiQL was designed to be as much URL friendly as possible, however all ApiQL queries, should be URL-encoded. In this document we use wget as it URL-encodes all URLs by default; curl has little bit more arcane syntax in this case: curl -G --data-urlencode "filter=[my ApiQL query]" http://awso.me/api/movies
In reality API consumers require much more than simple == predicate. ApiQL supports following set of predicates:
==,!=,>,>=,<,<=,like- equivalent SQL LIKE operator, however You don't need explicitly add%,ilike- case insensitive version oflike,notlike- equivalent SQL NOT LIKE operator,notilike- case insensitive version onnotlike,startswith- equivalent to SQL STARTS WITH operator,istartswith- case insensitive version ofstartswith,endswith- equivalent to SQL ENDS WITH,iendswith- case insensitive version ofiendswith,contains- alias tolike,notcontains- alias tonotlike,icontains- case insensitive version ofcontains,inotcontains- case insensitive version ofnotcontains,in- equivalent to SQL IN operator,notinequivalent to SQL NOT IN operator.
For example, query:
wget -q -O - 'http://awso.me/api/movies?filter=title ilike "Holy"'
will return all movies matching "Holy": "Monty Python and the Holy Grails", "Holy Money" and possibly bunch of other filcks matching "Holy".
and query:
wget -q -O - 'http://awso.me/api/movies?filter=release_year>=1975'
will return all movies released in 1975 or later.
Literals are the values, things that can be on the right hand side of predicate. So far we have seen strings ("Holy") and numeric literals (1975). ApiQL support bunch of other literals too:
- Strings - all string literals are unicode and are following the same rules like JSON string literals. ApiQL strings are always double-quoted (for example, this is a string: "This is a string", this however: 'not a string' is not), and escaped ("The movie: \"The Movie\"").
- Numbers - are basically integers and floats:
release_year != 2003orrating > 3.3or evenrating > -1.6E-35. - Boolean -
trueandfalseare translated into platform specific booleans. Example usage:ingored != false - Nil - special
nullliteral is translated into platform specific literal, for example:genres != null - Datetime - literal representing datetime:
created_datetime >= datetime("2019-05-01T08:00:00.527181+00:00"). Out of the box ApiQL supports ISO-8601 datetime formats (however, this behavior can be customized). - Tuples - represents series of values in
inandnotinclauses:release_year notin (1975, 2011). Tuples can contain coma separated list of other literals:release_date in (flase, null, datetime("datetime("1975-01-01T00:00:00.000000+00:00"))
Queries can be combined into more complicated expressions by grouping atomic predicates (separated by ;).
For example:
wget -q -O - 'http://awso.me/api/movies?filter=title ilike "Holy";release_year>1975;ignored!=null'
predicates in this query are interpreted as conjunction (and), returning all movies with title matching "Holy" and released after 1975 which are not marked as ignored.
ApiQL supports logical conjunctions (and) and disjunctions (or); both of them can nest predicates: and(criteria(;criteria)*)andor(criteria(;criteria)*)
Query below, is equivalent to the previous one:
wget -q -O - 'http://awso.me/api/movies?filter=and(title ilike "Holy";release_year > 1975;ignored != true)'
This one, however:
wget -q -O -'http://awso.me/api/movies?filter=or(title ilike "Holy";release_year>1975;ignored!=true)'
will return all movies with titles matching "Holy" or released after 1975 or not ignored.
Conjunctions and Disjunctions can be nested. Let's say we want to filter movies with rating greater than 7 or source is "IMDB", however we would like to filter only not-ignored resources:
wget -q -O - 'http://awso.me/api/movies?filter=and(or(rating>7;source="IMDB");ignored!=flase)'
So far, so good. Now, how ApiQL Queries can actually be interpreted by API data store? ApiQL queries are internally translated into python data structure (syntax tree) represented byCrtieria class.
Criteria along with Predicate, Conjunction and Disjunction fully represents parsed query tree.
Criteria class aggregates list of Criterion.
Criterion just abstract atomic criteria element; it's either:
- simple
Predicatean atomic logical expression (for examplePredicate('title', '==', 'Apocalypse Now')for querytitle=="Apocalypse Now") Conjunctionwhich again is just logicalandoperator with group of predicatesConjunction([Predicate('title','==', 'Apocalypse Now'),Predicate('release_year','>', 1975)])for queryand(title=="Apocalypse Now";release_year>1975)Disjunction- logicaloroperator
Parsing ApiQL query with python:
import apiql.parser as parser
from apiql.criteria import Criteria, Conjunction, Disjunction, Predicate
# ...
parsed_criteria = parser.parse('and(title like "Monty";genres == null;ignored!=false;release_year<=1975)')
syntax_tree = Criteria(
[Conjunction([
Predicate('title', 'like', 'Monty'),
Predicate('genres', '==', None),
Predicate('ignored', '!=', False),
Predicate('release_year', '<=', 1975)
])]
)
# parsed_criteria is equal to syntax_tree
assertEqual(syntax_tree, parsed_criteria)Now we can actually use ApiQL to filter resources. Out of the box ApiQL provides SQLAlchemy ORM integration (it can be, however integrated with other backends). This section showcases all basic query examples. Complete list of query capabilities can be found in the test suite.
All examples will use this sample data model:
Base = declarative_base()
class Genre(Base):
__tablename__ = 'genre'
id = Column(Integer, primary_key=True)
name = Column(String)
genre_id = Column(Integer)
movie_id = Column(Integer, ForeignKey('movie.id'), nullable=True)
class Movie(Base):
__tablename__ = 'movie'
id = Column(Integer, primary_key=True)
title = Column(String)
original_title = Column(String)
release_year = Column(Integer)
source = Column(String)
rating = Column(String)
created_datetime = Column(DateTime, default=datetime.utcnow)
genres = relationship('Genre', cascade="all", backref="movie", lazy=True)
drama = Genre(name="Drama", genre_id=1)
scifi = Genre(name="Sci-Fi", genre_id=2)
war = Genre(name="War", genre_id=3)
adventure = Genre(name="Adventure", genre_id=4)
comedy = Genre(name="Comedy", genre_id=5)
monty_python = Movie(title="Monty Python and the Holy Grail", release_year=1975, source="IMDB", rating="8",
genres=[comedy, adventure])
jurassic_park = Movie(title="Jurassic Park", release_year=1993, source='IMDB', rating="9",
genres=[adventure, scifi])
apocalypse_now = Movie(title="Apocalypse Now", release_year=1979, source="TMDB", rating="9",
original_title="Apocalypse Now, The", genres=[drama, war])
gosford_park = Movie(title="Gosford Park", release_year=2001, source='IMDB', rating="7", genres=[drama])
session.add(monty_python)
session.add(jurassic_park)
session.add(apocalypse_now)
session.add(gosford_park)A main entry point to SQLAlchemy integration is with_criteria extension method, which extends plain SQLAlchemy Query object with ApiQL capabilities. with_criteria is following basic SQLAlchemy conventions, so it can be freely used with native filter_by or filter functions.
Following examples show ApiQL queries and their native SQLAlchemy representations.
from apiql.backends.sqlalchemy.orm import with_criteria
actual = session.query(Movie).with_criteria('and(rating=="8";release_year==1975)')
# is equivalent to
expected = session.query(Movie).filter(
and_(
Movie.rating == 8,
Movie.release_year == 1975
)
)from apiql.backends.sqlalchemy.orm import with_criteria
actual = session.query(Movie).with_criteria('or(rating=="8";release_year==1993;source=="TMDB")')
# is equivalent to
expected = session.query(Movie).filter(
or_(
Movie.rating == 8,
Movie.release_year == 1993,
Movie.source == 'TMDB'
)
)actual = session.query(Movie).with_criteria('and(release_year > 1975; release_year < 2001)')
# is equivalent to
expected = session.query(Movie).filter(
and_(
Movie.release_year > 1975,
Movie.release_year < 2001
)
)actual = session.query(Movie).with_criteria('or(title like "THE"; original_title ilike "THE")')
# is equivalent to
expected = session.query(Movie).filter(
or_(
Movie.title.like('%THE%'),
Movie.original_title.ilike("%THE%")
)
)actual = session.query(Movie).with_criteria('and(title notlike "the"; release_year > 1990)')
# is equivalent to
expected = session.query(Movie).filter(
and_(
Movie.title.notlike('%the%'),
Movie.release_year > 1990
)
)actual = session.query(Movie).with_criteria('release_year in (1979, 2001))')
# is equivalent to
expected = session.query(Movie).filter(
Movie.release_year.in_((1979, 2001))
)and
actual = session.query(Movie).with_criteria('release_year notin (1979, 2001))')
# is equivalent to
expected = session.query(Movie).filter(
Movie.release_year.notin_((1979, 2001))
)actual = session.query(Movie).with_criteria('original_title == null)')
# is equivalent to
expected = session.query(Movie).filter(
Movie.original_title.is_(None)
)and
actual = session.query(Movie).with_criteria('original_title != null)')
# is equivalent to
expected = session.query(Movie).filter(
Movie.original_title.isnot(None)
)Following queries are equivalents
actual = session.query(Movie).with_criteria('title startswith "The")')
# is equivalent to
expected = session.query(Movie).filter(
Movie.title.startswith("The")
)and
actual = session.query(Movie).with_criteria('title endswith "Park")')
# is equivalent to
expected = session.query(Movie).filter(
Movie.title.endswith("Park")
)actual = session.query(Movie).with_criteria('or(original_title contains "The";title contains "the")')
# is equivalent to
expected = session.query(Movie).filter(
or_(
Movie.original_title.contains('The'),
Movie.title.contains('the')
)
)Following queries are equivalents
now = datetime.datetime.now().isoformat()
actual = session.query(Movie).with_criteria('created_datetime<datetime("{}")'.format(now))
# is equivalent to
expected = session.query(Movie).filter(
Movie.created_datetime < datetime.datetime.fromisoformat(now)
)Joins are supported as well. Following queries are equivalents:
actual = session.query(Movie).join(Genre).with_criteria('name=="War"')
# is equivalent to
expected = session.query(Movie).join(Genre).filter(
Genre.name == 'War'
)ApiQL supports aliased entities:
kind = aliased(Genre, name='kind')
actual = session.query(Movie).join(kind).with_criteria('kind.name=="War"')
# is equivalent to
expected = session.query(Movie).join(kind).filter(
kind.name == 'War'
)ApiQL is technology agnostic whenever possible and can be used with all popular python web frameworks (Flask, Bottle, Django etc.).
(side note: ApiQL reference implementation fully supports Flask-SQLAlchemy extension as well).
Here's is a simple Flask API with ApiQL filtering (assuming Movie and Genre classes are json serializable)
from apiql.backends.sqlalchemy.orm import with_criteria
# ...
@app.route("/api/movies", methods=["GET"])
def movies():
criteria = request.args.get('filter', '')
return jsonify(Movie.query.join(Genre).with_criteria(criteria).all())Now we can filter resources with ApiQL:
wget -q -O - 'localhost:5000/api/movies?filter=and(or(title like "Python";original_title like "Python");source=="TMDB")'
Note: that we can use empty string when API consumer do not specify filtering query.
This query:
wget -q -O - 'localhost:5000/api/movies'
will return all, unfiltered resources.
In most cases API providers gives only limited access to attributes consumers can use. ApiQL supports this capability by whitelisting which attributes can be accessed in queries (this does not change however what attributes are exposed in resources).
Whitelists can be enabled with whitelisted Query extension method. By default all resource attributes are are whitelisted.
ApiQL just builder will only whitelist explicitly specified resource attributes.
from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted
from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed
@app.route("/api/movies", methods=["GET"])
def movies():
criteria = request.args.get('filter', '')
query = Movie.query.join(Genre).whitelisted(just((Movie.title, Movie.release_year))).with_criteria(criteria)
return jsonify(query.all())Now, this query:
wget -q -O - 'http://localhost:5000/api/movies?filter=release_year==2001'
will work just fine, as Movie.release_year is whitelisted,
however, this call:
wget -q -O - 'http://localhost:5000/api/movies?filter=rating=="8.0"'
will fail with:
ValueError: Invalid query attribute: 'rating'.
everything builder whitelists all entity (or entities) attributes. This is default behavior when whitelist is not specified. ApiQL engine will scan all Query entities, and whitelist all attributes.
from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted
from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed
@app.route("/api/movies", methods=["GET"])
def movies():
criteria = request.args.get('filter', '')
query = Movie.query.join(Genre).whitelisted(everything(Movie)).with_criteria(criteria)
return jsonify(query.all())Note, that in this case, only Movie attributes are whitelisted, while all Genre attributes are not.
In this case:
wget -q -O - 'http://localhost:5000/api/movies?filter=rating=="8.0"'
will work as expected. However, this query:
wget -q -O - 'http://localhost:5000/api/movies?filter=name=="Sci-Fi"'
will fail again.
everything_but builder whitelists all attributes, except those specified in but clause.
from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted
from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed
@app.route("/api/movies", methods=["GET"])
def movies():
criteria = request.args.get('filter', '')
query = Movie.query.join(Genre).whitelisted(everything_but(entities=Movie, but=Movie.id)).with_criteria(criteria)
return jsonify(query.all())Now, this call will fail as Movie.id is not whitelisted:
wget -q -O - 'http://localhost:5000/api/movies?filter=id==1'
Finally merged whitelist builder can combine (merge) two whitelists. Following example:
from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted
from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed
@app.route("/api/movies", methods=["GET"])
def movies():
criteria = request.args.get('filter', '')
query = Movie.query.join(Genre).whitelisted(merged([everything(Movie), just(Genre.name)])).with_criteria(criteria)
return jsonify(query.all())will whitelist all attributes from Movie and just Genre.name from Genre.
Query attributes can be prefixed to be more consumer friendly. For instance, in above examples, name attribute will resolve to Genre.name (we don't have column name collision here between Movie and Genre). However from consumer perspective it would be much elegant to map this attribute to something more obvious; prefixed does exactly this. Here's an example:
from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed
actual = session.query(Movie).join(Genre) \
.whitelisted(everything(Movie, prefixed('genre', Genre))) \
.with_criteria('rating=="9";genre.name=="War"')
# is equivalent to
expected = session.query(Movie).filter(Movie.rating == "9") \
.join(Genre).filter(Genre.name == 'War')Sometimes we would like to expose query attribute under different name (for example we would like to keep backward contract compatibility). mapped function is does just for this.
Let's say we would like to map Genre.name to query attribute kind, so we can use nicer queries like kind=="War"
from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted
from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed
@app.route("/api/movies", methods=["GET"])
def movies():
criteria = request.args.get('filter', '')
query = Movie.query.join(Genre).whitelisted(just(mapped('kind', Genre.name))).with_criteria(criteria)
return jsonify(query.all())