Skip to content

Releases: OpenPipe/ART

v0.5.7

08 Jan 00:38
51528ca

Choose a tag to compare

Release Highlights

What's Changed

  • fix: Bump minimum openai version to 2.14.0 (#504)
  • Release v0.5.6 (#502)
  • fix: Pin vLLM to 0.13.0 (#501)

Full Changelog: v0.5.6...v0.5.7

v0.5.6

06 Jan 16:16
b4b9965

Choose a tag to compare

Release Highlights

What's Changed

  • fix: Pin vLLM to 0.13.0 (#501)
  • release: Bump version to 0.5.5 (#500)
  • feat: Add support for a LocalBackend Tinker model service (#499)

Full Changelog: v0.5.5...v0.5.6

v0.5.5

06 Jan 01:42
789e273

Choose a tag to compare

Release Highlights

What's Changed

  • feat: Add support for a LocalBackend Tinker model service (#499)
  • feat: Default loss to CISPO (#498)
  • refactor: Remove coupled Unsloth service, upgrade to vLLM 0.11+ (#497)
  • Deploy to model name + " (deployment)" (#496)
  • Support more LoRA models in WandbDeploymentConfig (#495)
  • Log metrics horizontally in W&B to simplify comparison to future runs (#494)
  • Return 0th checkpoint (#492)
  • Ensure bucket exists before pushing model weights (#491)
  • Release v0.5.4 (#488)
  • Revert "Update version to 0.5.4" (#487)
  • Update version to 0.5.4 (#485)

Full Changelog: v0.5.4...v0.5.5

v0.5.4

15 Dec 23:41
9c8a3d1

Choose a tag to compare

Release Highlights

This patch release adds checkpoint download functionality and includes fixes for SkyPilot and package configuration.

New Features

  • Download Checkpoint: Much simpler workflow for downloading checkpoints from training runs

Bug Fixes

  • Fixed --system flag for uv pip install on SkyPilot backend
  • Replaced deprecated uv.dev-dependencies with dependency-groups in package configuration

What's Changed

  • Add download checkpoint functionality (#464)
  • fix: add --system flag to uv pip install for SkyPilot backend (#462)
  • fix: replace deprecated uv.dev-dependencies with dependency-groups (#484)

Full Changelog: v0.5.3...v0.5.4

v0.5.3

24 Nov 16:14
08c4c29

Choose a tag to compare

Release Highlights

What's Changed

  • Release version 0.5.2 (#457)
  • Remove openpipe dependency (#456)
  • Add strip_logprobs utility function (#455)
  • fix: Handle RULER rewards when all trajectories are identical (#454)
  • Make copy.copy work for trajectories (#453)
  • Fix lint (#451)
  • feat: Add OpenEnv integration example (#445)
  • Release v0.5.1 (#442)

Full Changelog: v0.5.1...v0.5.3

v0.5.1

22 Oct 15:58
0036512

Choose a tag to compare

Release Highlights

What's Changed

  • Record auto_metrics on trajectory (#440)
  • Fix ruff formatting (#438)
  • Document Qwen3 14B instead of Qwen2.5 14B in non-tutorial examples (#437)
  • Small docs change (#433)
  • Serverless documentation (#432)
  • Retry GET and DELETE (#431)
  • Release v0.5.0 (#428)
  • Release v0.4.12 (#427)
  • feat: Add VLM support (#412)

Full Changelog: v0.5.0...v0.5.1

v0.5.0

07 Oct 05:57
fe5bd7d

Choose a tag to compare

Release Highlights

What's Changed

  • Release v0.4.12 (#427)

Full Changelog: v0.4.12...v0.5.0

v0.4.12

07 Oct 03:24
e3f7968

Choose a tag to compare

Release Highlights

What's Changed

  • Add client-side error capturing (#426)
  • Send wandb-artifact:/// prefix as part of inference name. (#425)
  • Report serverless metrics (#424)
  • feat: Add placeholder _log() implementation for ServerlessBackend (#422)
  • Upgrade SkyPilot to 0.10.3.post1 (#421)
  • fix: exit the loop in the monitor_openai_server (#418)
  • feat: Upgrade Unsloth (#408)
  • add playwright agent example to dev/ART (#402)
  • feat: Update SkyPilot to 0.10.2 (#393)
  • Update training details (#389)
  • LocalBackend._monitor_openai_server improvement (#388)
  • Add RULER scoring to LG integration example (#385)
  • Show open deep research tutorial (#384)
  • Minor open deep research doc edits (#383)
  • Add deep research tutorial (#382)
  • Show GSPO docs page (#381)
  • Add MCP•RL doc, remove GSPO (#380)
  • Add news item on LangGraph (#379)
  • gather_trajectory_groups: fused after_each callback to group await (#378)
  • Document RULER in README (#376)
  • Release v0.4.11 (#374)
  • Pin gql verion to fix (#372)
  • Update nb links (#371)
  • Allow run_checks.sh to succeed on mac (#370)
  • Add art.mcp package, release 0.4.10 (#369)

Full Changelog: v0.4.11...v0.4.12

v0.4.11

27 Aug 01:59
80bd0d2

Choose a tag to compare

Release Highlights

This patch release includes bug fixes, documentation improvements, and a new MCP package:

New Features

  • MCP Package: Added art.mcp package for Model Context Protocol integration

Bug Fixes

  • Fixed GraphQL dependency compatibility by pinning gql package to < 4
  • Fixed run_checks.sh script to succeed on macOS

Documentation & Examples

  • Updated notebook links and examples
  • Improved LangGraph integration documentation
  • Better documentation for wrap_rollout function

What's Changed

  • Add art.mcp package (#369)
  • Pin gql version to fix compatibility (#372)
  • Allow run_checks.sh to succeed on mac (#370)
  • Update nb links (#371)
  • Properly document wrap_rollout (#368)
  • Update LangGraph docs (#367)
  • Link to LangGraph (#365)
  • Update LangGraph integration doc (#363)

Full Changelog: v0.4.9...v0.4.11

v0.4.9 - LangGraph Integration

25 Aug 20:47
57e7de7

Choose a tag to compare

🕸️ LangGraph Integration - Build Smarter Multi-Step Agents

This release introduces seamless integration with LangGraph, enabling you to train sophisticated ReAct-style agents that improve through reinforcement learning without manual prompt engineering.

✨ Major Features

  • 🆕 LangGraph Integration - Drop-in replacement for LangGraph's LLM initialization with automatic logging and trajectory capture
  • 🔄 Multi-Step Agent Training - Train agents that reason, use tools, and adapt their behavior over time
  • 📊 Auto Trajectory Generation - Automatic conversion of LangGraph agent executions into ART training data
  • ⚡ RULER Compatibility - Use ART's general-purpose reward function without hand-crafted rewards

🔧 Improvements

  • Type Safety - Enhanced type annotations and fixes for LangGraph integration
  • Memory Management - Better CUDA cache management and garbage collection utilities
  • Dependencies - Pinned litellm to version 1.74.1 for stability
  • Code Quality - Refactored logger imports and async tokenizer methods

📚 Documentation & Examples

  • New Documentation - Comprehensive LangGraph integration guide with examples
  • Updated README - Featured LangGraph integration in main project description
  • Example Notebook - ART•E LangGraph notebook for training email search agents
  • License Updates - Updated third-party notices and licensing information

🔧 Code Example

import art
from art.langgraph import wrap_rollout, init_chat_model
from langgraph import create_react_agent

@wrap_rollout(model)
async def run_agent(scenario: str) -> art.Trajectory:
    agent = create_react_agent(init_chat_model(), tools)
    result = await agent.ainvoke({"messages": [("user", scenario)]})
    return art.Trajectory()  # Automatically captured

# Train with RULER - no reward engineering needed!
await art.train(model, reward_function="ruler")

🔗 Links